BUYING A WORK OF ART OR AN ARTIST?

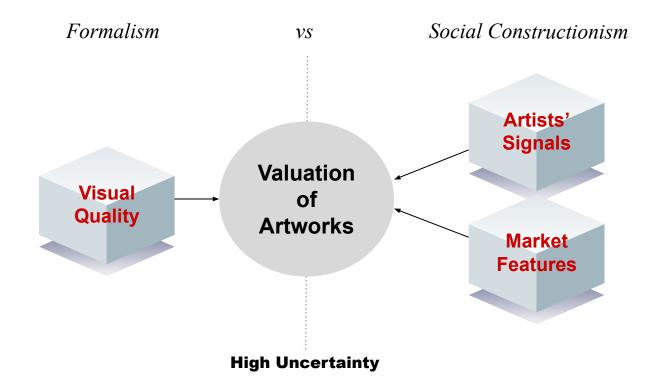
IMPOSSIBILITY AND POSSIBILITY OF PREDICTING PRICE OF ARTWORK

Kangsan Lee¹, Jaehyuk Park²,2 Sam Goree³, David Crandall³, and Yong-Yeol Ahn³

¹ New York University Abu Dhabi, Abu Dhabi
² School of Public Policy and Management, Korea Development Institute, South Korea
³ Luddy School of Informatics, Computing, and Engineering, Indiana University

Formalism vs Social Constructionism

Valuation / Pricing of Artworks



CHINA ART MARKET REPORT - JULY 2015

ArtTactic

ailit Ito

ArtRank

LO

Sear

Who Are

Collect smarter.

HOME MARKET ANALYSIS BESPOKE SERVICES PODCASTS EDUCATION ABOUT US

contemporary sales drop 44%. Slowing economic growth in China's and an es-

campaign introduced by the government last ye art market growth in the second half of 2014. H 2015, recovered the losses from the previous s sales for the top four auction houses (Sotheby's China Guardian) raised a total of \$1.6 billion, up 2014. The total came in 2.5% lower than Spring 39% lower than the market peak in Spring 2011 Although the overall Chinese art market did we

s		ArtRani	™ gives you an unprecedent	ted data-driven advantage i	n art collecting.	
		BUY UNDER \$30,000	BUY UNDER \$100,000	EARLY BLUE CHIP	SELL / PEAKING	_
	BUY UNDER \$10,000	1. Josh Kline	1. Sadie Benning	1. Njideka Akunyili Crosby	1. Nate Lowman	UNDERVALUED BLUE CHIP
	1. Darja Bajagić	2. Jonathan Gardner	2. Mernet Larsen	2. Jordan Wolfson	2. Alex Israel	1. Carroll Dunham
sco	2. Danny Fox	3. Max Hooper Schneider	3. Latifa Echakhch	3. Nicole Eisenman	3. Tauba Auerbach	2. Kerry James Marshall
	3. Louise Bonnet 4. Nathan Zeidman	4. Melike Kara	4. Aaron Garber-Maikovska	4. Mary Weatherford	4. Torey Thornton	3. Philip Guston 4. Eric Fischl
	4. Nathan Zeidman	5. Orion Martin	5. Jana Euler	5. Jonas Wood	5. Seth Price	5. George Condo
	6. Aaron Fowler	6. Brian Calvin	6. Jennifer Guidi	6. Henry Taylor	6. Math Bass	6. Kenny Scharf
		7 Mira Danov	7. Nina Chanel Abney	7. Olafur Eliasson	7. Danh Võ	7. Sol LeWitt
MARKET			8. Ugo Rondinone	8. Jamian Juliano-Villani	8. Mike Kelley	
the Top 100 Most Collectible Living Artists?				9. Joe Bradley	9. Oscar Murillo	2. Nam June Paik
				10 Avery K Singer		7. Isam June Palk

artnet News, Thursday, May 26, 2016

.

SHARE

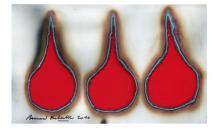
10. Avery K. Singer ccess Enter your email

artnet news

Market Art World People Videos To

MARKE Who Are the Most Undervalued Artists in Today's Market?

Henri Neuendorf, Thursday, November 12, 2015



Most Popular

Data

36,549 records of artwork of 590 living contemporary artists, spanning 23 countries for 17 years (1996 to 2012)

Visual Information (8971 features)

- Publicly available thumbnail images

Market Information (8 features)

- Year
- Auction House tier
- Market growth
 - Continent level
 - Country level

Artist information (30 features)

- Age / Gender / Nationality/ Education / Award / Biennale / Artistic Ranking / Solo and Group exhibitions / Private and Public Collections / Location of living and working
- Matched Genre and Country
- Previous Year Price level (Max Mean Median)
- Previous sales (5 / 10 transactions; Max Mean Median)

Buying an Artwork:

Computer Vision Analysis of Visual Content

What is form? How can we describe it numerically?

• The digital image is already an imperfect representation of a real object

Buying an Artwork:

Computer Vision Analysis of Visual Content

What is form? How can we describe it numerically?

- The digital image is already an imperfect representation of a real object
- ...and a low resolution thumbnail doesn't help.

Buying an Artwork:

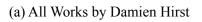
Computer Vision Analysis of Visual Content

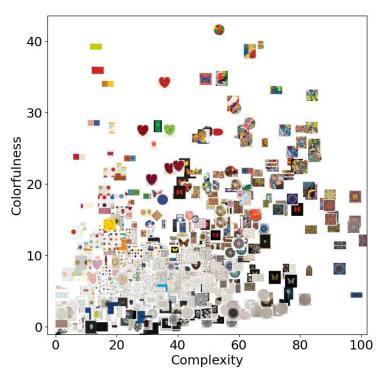
What is form? How can we describe it numerically?

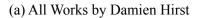
- The digital image is already an imperfect representation of a real object
- ...and a low resolution thumbnail doesn't help.

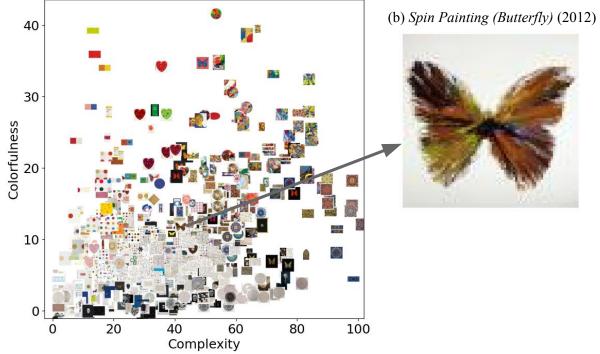
Some ideas:

- color (pixels have color)
- shape (how edges fit together)
- composition (spatial distribution of edges)
- recognizable objects (image classification)

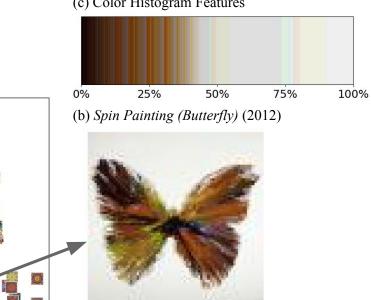




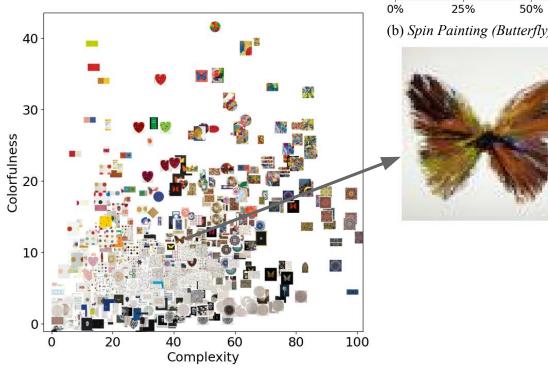




(c) Color Histogram Features

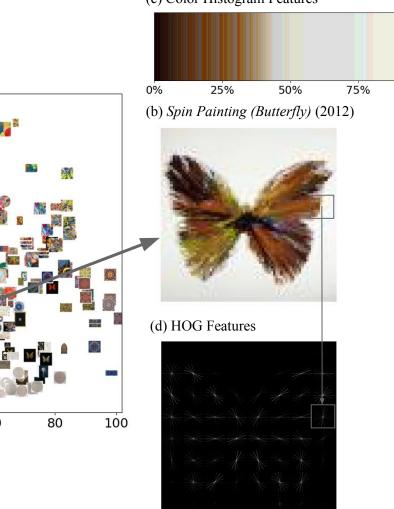


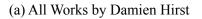
(a) All Works by Damien Hirst

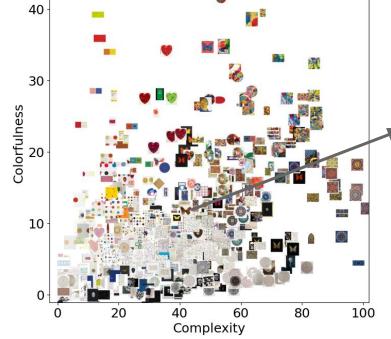


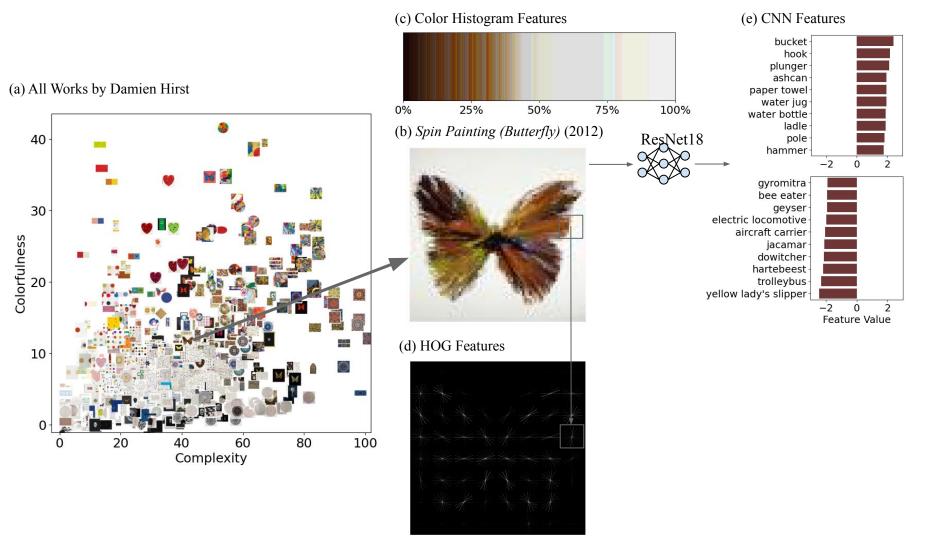
(c) Color Histogram Features

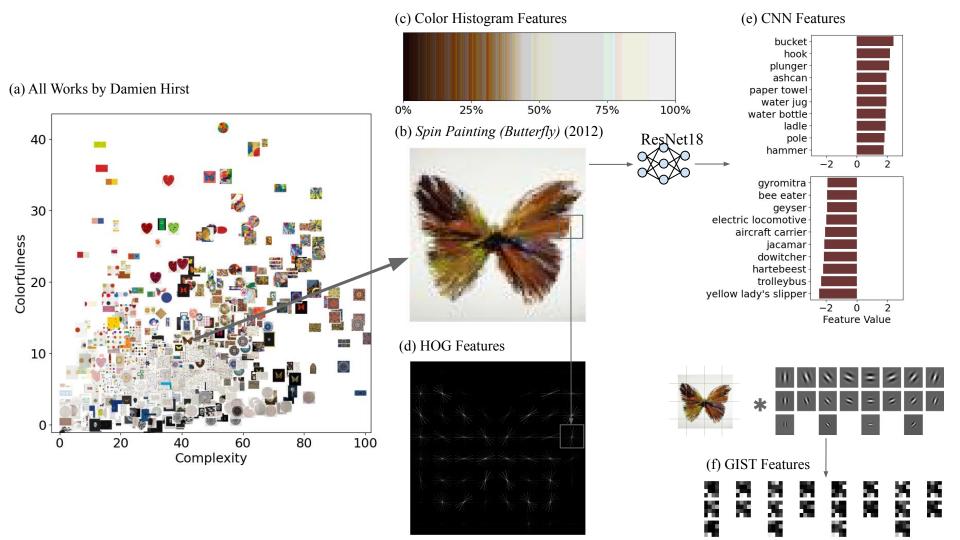
100%











Visual Features to Predictions

That leaves us with 8971 numbers to describe each image. In some cases, that's more features than pixels!

To reduce redundancy, we perform principal component analysis (PCA) to summarize that information in 100 features.

We then predict price using the XGBoost regression model, which we will discuss in more detail shortly.

Model	Price (Test set R^2)
Baseline (mean regressor)	-0.002
XGBoost (visual features)	0.397

Without metadata information, are able to achieve R^2 score of 0.397.

While these features are useful, they do not explain most variation in prices.

Model	Price (Test set R^2)
Baseline (mean regressor)	-0.002
XGBoost (visual features)	0.397
XGBoost (metadata features)	0.733
XGBoost (visual+metadata features)	0.713
XGBoost (metadata+ prof. est.)	0.919
XGBoost (visual+metadata+ prof. est.)	0.917

Metadata features are much more effective!

In fact, with metadata, visual features cease to be helpful, reducing the score both with and without professional estimates.

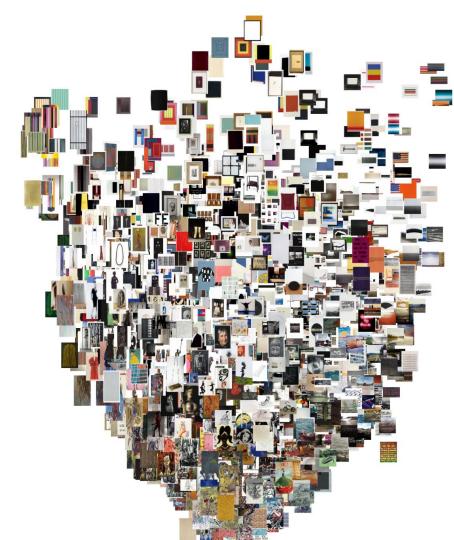
This is a really reductive way to look at art!

Art exists in many contexts

but this sort of method only consider it in the purely visual context of our dataset

and it only reaches the formal level, considering arrangements of lines and colors, and doesn't pretend to access meaning or feeling in any way

But that's still good enough to explain almost 40% of variation in price.



Buying an Artist: Metadata Analysis of Artists and Markets

How far can we predict the price,

without seeing the artwork

(or even before it's actually made)?

Features by Category: Artwork & Market

- Artwork

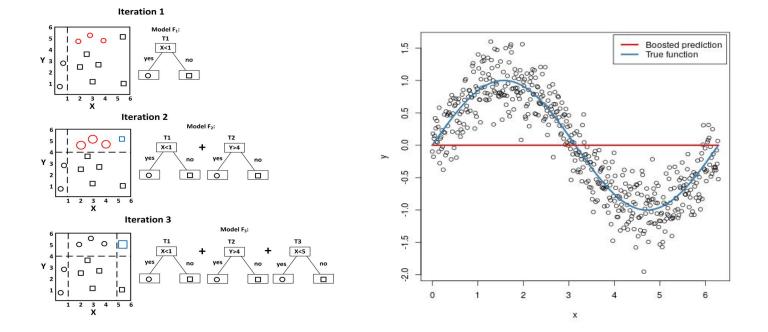
- (a) Width, Height, and Square-inch Size
- (b) Genre Painting, Photography, Work on Paper, Print, and others
- Market
 - (c) Year
 - (d) Auction house tier
 - (e) Mean / Maximum / Median Prices of Continent & Country

Tier	Auction Houses
1	<i>Christie, Sotheby,</i> and <i>Phillips</i> in New York or London
2	<i>Christie, Sotheby,</i> and <i>Phillips</i> in any other cities
3	Dorotheum, Kunsthaus Lempertz, Cornette de Saint Cyr, Villa Grisebach Auktionen, Artcurial, Van Ham, im Kinsky Kunst Auktionen, and Ketterer Kunst
4	All others

Features by Category: Artist

<u>`</u> , `,		
Age	Age of an artist	
Gender	Gender of an artist	
Education	Education level of an artist	
	(Domestic/Abroad, Elite School or not, and Degree level)	
Price - {Mean / Max / Median}	Mean / Maximum / Minimum / Median price of the artworks by an artist	
	during the year when auction is occurred.	
{Minimum / Mean / Median} price of	Mean / Maximum / Minimum / Median price of the artworks by	
<i>{5 / 10} artworks</i>	an artist during the last five and ten auction transactions	
{Minimum / Mean / Median} price of	Size-standardized minimum / mean / median price of the artworks	
$\{5/10\}$ artworks weighted by size	by an artist during the last five and ten transactions	
Award	Records of art awards won by artists	
Biennial	Records of participation in art fair or biennial	
Ranking	Global artistic ranking of the artist as determined from	
	U.S. and European art sources	
Solo and Group Shows	Number of solo and group exhibitions for an artist, respectively	
Match - Genre	Whether an artwork is identified as part of the major genre of the artist	
Match - Country	Whether an artwork is sold in the working country of its artist	
Private Acquisition	Number of private acquisitions of artist works by individual collectors	
Public Acquisition	Number of public acquisitions by museums	
Artist's working country - {Country Name}	Country where an artist is mainly working	
Artist's living country - {Country Name}	Country where the auction is living	

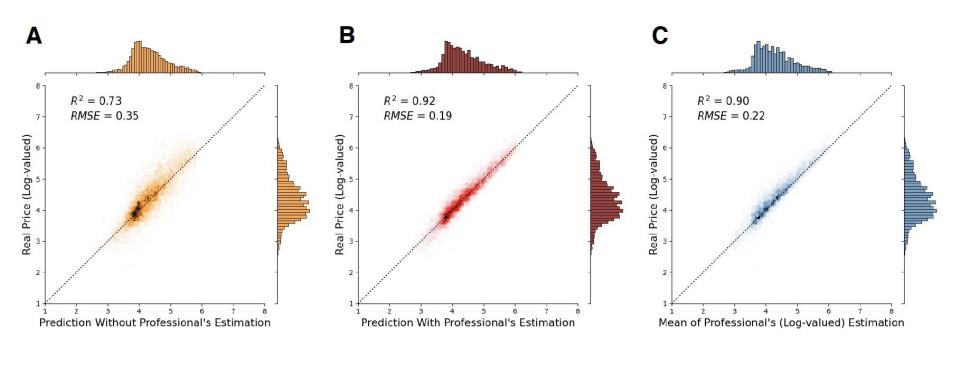
Model: Extreme Gradient Boosting (XGBoost)



Good Performance & Interpretability

Price Prediction

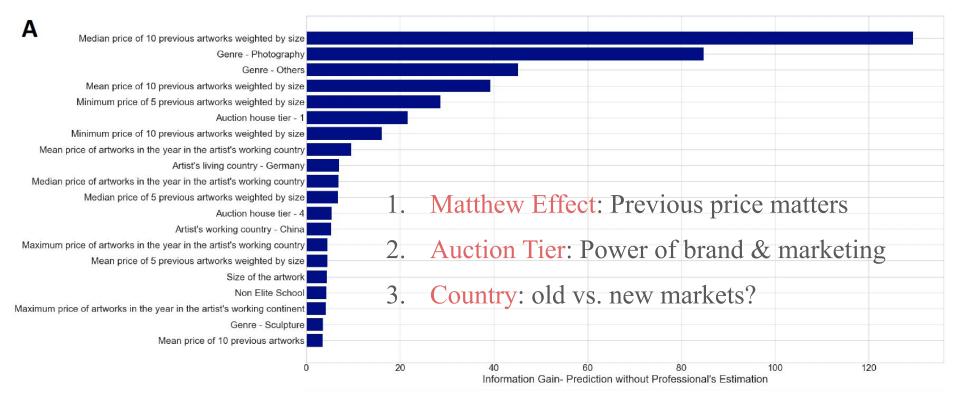
- (1) Metadata, Without Professional's Estimation Information
- (2) Metadata, With Professional's Estimation Information
 - (a) Estimated Minimum
 - (b) Estimated Maximum
- (3) Comparison with Professional's Estimation

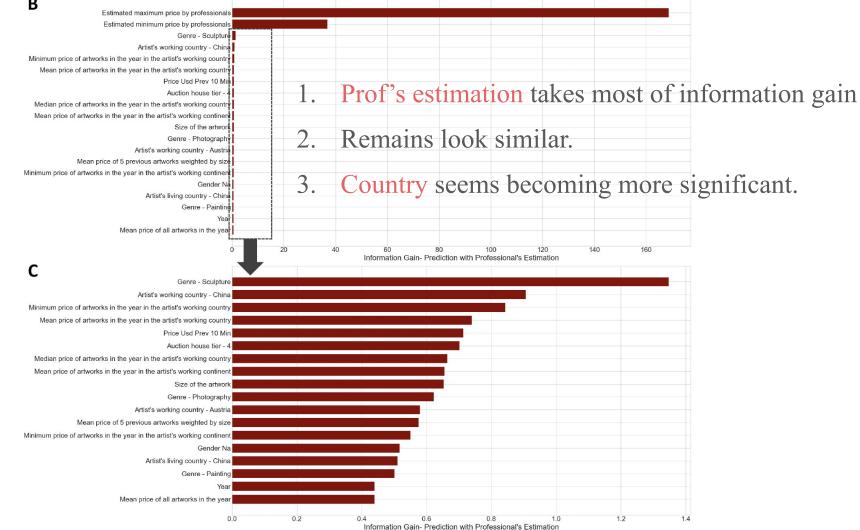


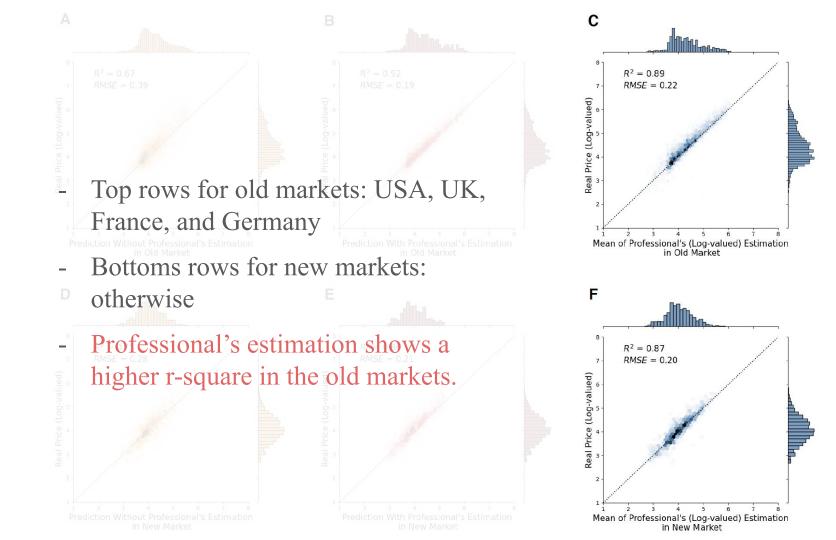
WITHOUT

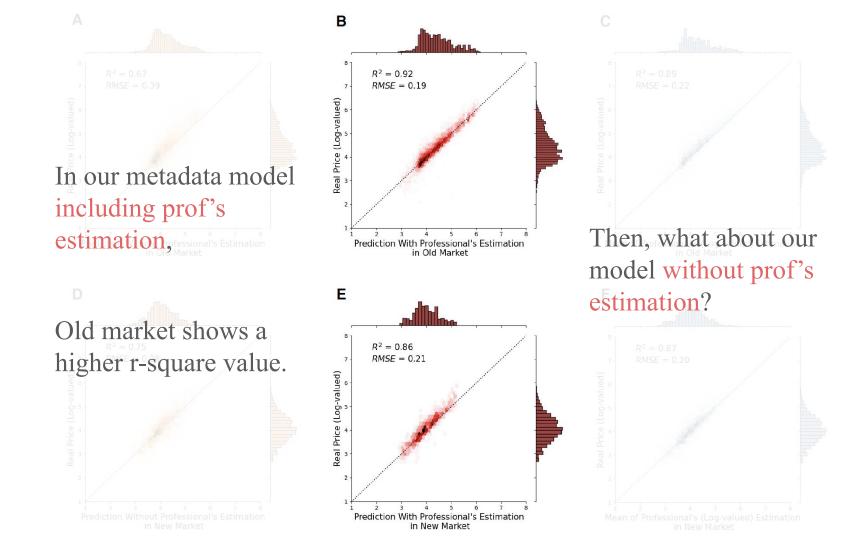
Professional's Information

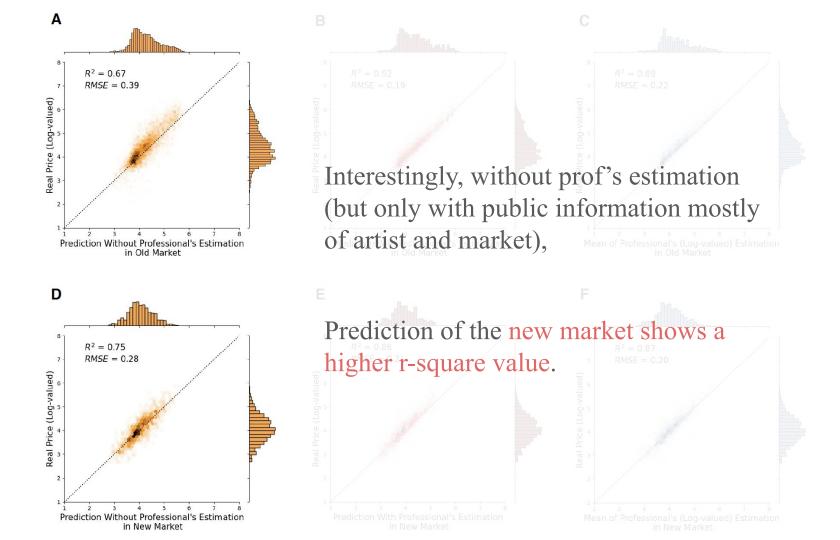
WITH Professional's Information JUST Professional's Information











Discussion

- (1) Aesthetic Gap, the null finding of visual information
- (2) Cultural consumption is highly socialized action reinforced by social mechanism.
- (3) Object vs Social structures (together)
- (4) The potential benefit of ML approach to complement the domain specialty (especially in new markets)