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Free-Trade Areas and Contingent Protection

between Competing Exporters

Belayneh Kassa Anagaw and Chrysostomos Tabakis

December 6, 2018

Abstract

This paper investigates the impact of free-trade areas (FTAs) on the use

of contingent protection between competing exporters. We develop a dy-

namic model similar to the competing-importers one of Tabakis (2015), in

which countries are limited to self-enforcing cooperative multilateral trade

agreements and the economic environment is characterized by trade-flow

volatility. Our analysis demonstrates that the findings of Tabakis (2015)

extend to our competing-exporters case. In particular, the parallel forma-

tion of different FTAs results in a gradual but permanent easing ofmultilat-

eral trade tensions, especially as far as contingent protection is concerned.

Thus, our results highlight a building-block effect of FTAs on multilateral

trade cooperation.
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1 Introduction

There is an ongoing theoretical debate among economists about the impact of

RTAs on the realization of multilateral trade liberalization. The first group of

economists argues that RTAs can be a building block towards multilateral trade

liberalization. While others argue RTAs ar a stumbling block for multilateral

cooperation.

For example, Summers et al. (1991) emphasizes the positive role of RTAs on the

facilitation of multilateral trade negotiations. Similarly, Ornelas (2012) by using

an oligopolistic-political-economy model highlights the role played by FTAs in

reducing obstacles to multilateral trade liberalization, thus emerging as a build-

ing block towards global free trade.

On the other hand, there is a theoretical justification where RTAs can be

a stumbling block for multilateral negotiations due to the possibility that such

agreements can generate static welfare gains. Under such circumstances, RTAs

will reduce the incentives to extend trade liberalization. In his ”dynamic path

model” Krugman (1993), shows how regionalism affects multilateralism.

The other theoretical paper by Krishna (1998) shows that RTAs create disin-

centives for multilateral trade liberalization. Using a model of imperfect compe-

tition in different segmentedmarkets, Krishna posits two conclusions: RTAs that

result in trade diversion are more likely to be supported politically and hence,

such RTAs will reduce incentives for multilateral liberalization. Aghion, Antràs,

and Helpman (2007) developed a dynamic bargaining model and show the pos-

sibilities of stumbling block and building blocks effects of Free Trade Areas

(FTAs) on Multilateral cooperation.1

Bagwell and Staiger (1997) model the implication of customs union forma-

tion on multilateral tariff cooperation and shows that the early formation of cus-

toms unions can lead to a temporary easing of multilateral trade tensions at the
1see Bhagwati (1993) for further elaboration in this issues.
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early stages of their formation. But once the process of customs unions is com-

pleted, the market–power effect becomes real and there will be an incentive to

deviate to a higher tariff. The intuition is that the formation of customs unions

gives rise to trade–diversion effect and a market power effect. Thus, their model

shows the importance of the market power effect relative to the trade diversion

effect that ultimately results in the prediction that the positive impact of cus-

tom union formation is just temporary which will have a negative consequence

on multilateral tariff cooperation once the process of custom union formation is

completed.

In a similar work Bagwell and Staiger (1997) model the consequence of the

formation of RTAs on the ability to maintain effective multilateral cooperation.

Their model predicts that from the start to the negotiation of the RTAs, the im-

pact on the ability of multilateral cooperation is negative. However, their model

suggests that the negative impact on multilateral tariff cooperation is temporary.

Once RTA formation process is completed, country’s ability to multilaterally

cooperate is restored.

2 The Model

We assume four-country, four-good world where each importing country has

three countries competing to export a specific good. Suppose the four countries

are X, Y,W and Z, and the associated goods that are produced and exchanged in

the international market are x, y, w and z. At any period, country i’s endowment

of good i and j are 1-e and 1+ e
3
respectively, where j and i ∈ (x, y, w, z), i ̸= j,

and the variable e, whichwe use to capture trade-flow volatility is a random num-

ber which is drawn independently from a uniform distribution on [0,1]. Country

I is the only importer of good i for I ∈ (X,Y,W,Z). On the consumption side,

we assume all countries face symmetric demand functions where the demand for

product i in country J, where J ∈ (X,Y,W,Z), is given by C(P j
i ) = α− βP j

i ,
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where the constant β is positive, α > 4
3
, P J

i is the price of good i in country

J. Our model follows from Tabakis (2015) which uses the competing importers

model instead.

As in Tabakis (2015), in this model we assume there exists two trading blocs;

country X and Y form an FTA on one side and W and Z form another FTA.

Country i imports good i from country j, hence country i’s import of good i from

j is equal to country j’ s export of good i. Thus, country i’s import demand for

good i from country j is given by (1 + e
3
)−C(P j

i ), which is exactly country j’s

export of good i. And we keep assuming each country’s economic environment

is characterized by the volatility of trade flows at every period that is a function

of e as in Tabakis (2015).

Finally, following Tabakis (2015) and Bagwell and Staiger (1997), we as-

sume the world goes through three phases: Phase I with no FTAs between coun-

tries, but with possibility of future FTAs negotiation between prospective coun-

try pairs; Phase II where trade negotiations are held between X and Y in the

one hand,and W and Z in the other hand; finally phase III, where two symmetric

FTAs are in place in the world. Moreover, each country follows the MFN princi-

ple for non-discrimination. In addition, we assume also that if FTA negotiations

have not yet started, there is the possibility that the FTA negotiations between X

and Y on the one hand and W and Z i in the other hand will start in next period

with probability ρ ∈ [0, 1]. Finally, we assume that if the trade talks have started

at time t between country pairs, they will be concluded and be in effect at t+1

with probability λ ∈ [0, 1].

3 Phase III

In Phase III, X and Y form one FTA, while W and Z form another one. Thus,

our analysis begins with such a symmetric world.
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3.1 Phase–III static game

The non-arbitrage condition yields for good x (similarly for the rest of the good):

PX
x = P Y

x = PW
x + τX = PZ

x + τX (1)

PX
x refers to the price of product x in country X and τX and τW is the import tariff

of country X. The market clearing price for good i requires the world demand to

be equal to the world supply.

1− e+ 3(1 +
e

3
) = CX

X + CY
X + CW

X + CZ
X

= 4α− 4βPX
X + β

(
τX + τX

)

PX
X =

4α− 4 + 2βτX

4β
=

α− 1

β
+

τX

2
= P Y

X (2)

Therefore:

PW
X =

α− 1

β
− τX

2
(3)

In our case country X imports good x from three countries: Y, W and Z. But

the tariff against country Y is zero due to the FTA. We assume that the tariff that

is chosen by each country is non-negative and non-prohibitive. Thus, the price

set for a give product has the following arbitrage condition.

Country X’s import function is thus expressed as:

MX
W = (1 +

e

3
)− (α− β

(
PW
X

)
) =

e

3
− βτX

2
(4)

A similar relationship holds for X’s import function from Z.

5



Therefore, country X’s welfare is defined as the sum of the surplus received from

the consumption of four goods, the surplus received from the production of the

four goods and the tariff revenue from imports of X from country W and Z:

WX
3 =

∫ α/β

PX
X

C (P ) dP +

∫ α/β

PX
Y

C (P ) dP +

∫ α/β

PX
W

C (P ) dP +

∫ α/β

PX
Z

C (P ) dP

+

∫ PX
X

0

(1− e) dP +

∫ PX
Y

0

(
1 +

e

3

)
dP +

∫ PX
W

0

(
1 +

e

3

)
dP +

∫ PX
Z

0

(
1 +

e

3

)
dP

+τXMX
W + τXMX

Z (5)

Using equation (5), we can derive the optimal tariff for country X:

∂WX
3

∂τX
=

e

6
− 7

4
βτX (6)

This implies thatWX
3 is strictly concave in τX and the best response tariff for X

equal:

τNX =
2e

21β
(7)

Since country X and country Y face similar situation they have the same

Nash tariff. That is the Nash tariff for country Y equal:

τNY =
2e

21β
(8)

Note that the global efficient tariff is zero since ∂W3(e,τ⃗)
∂τ

= −2βτ implying that

the Nash tariff choosen by each country is not efficient. Hence countries can

become better off if they cooperatively choose their tariffs. To give an intuitive

explanation, a tariff by a given country worsens the exporting countries’ terms

of trade and hence welfare. Though the importing country is better off in terms

of generating tariff revenue, its welfare will be negatively affected by the tariffs
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it faces against its exports. The implication is that our static game features of the

Prisoners dilemma property. Hence, countries can do better if they cooperate.

3.2 Phase–III dynamic game

Now we consider a dynamic where countries engage in a repetition of the static

game analysed above. We assume at the start of the period, countries are in-

formed about the current trade shock and its implications for inter-bloc trade vol-

ume. Then they simultaneously choose their current period tariff. When coun-

tries choose their current period tariff, the chosen tariff must be self-enforcing.

More precisely, for a given value of e, a one-time deviation from the cooperative

tariff must not exceed the discounted future benefit of cooperation. To develop

it mathematically gain from one time deviation given by:

Ω3(τ
N
x , τ cx, τ

c
−x) ≡ WX

3 (τNx , τ c−x)−WX
3 (τ cx, τ

c
−x) (9)

dΩ3(e, τ
N
x , τ cx, τ

c
−x)

de
=

∂W x
3 (e, τ

N
x , τ cx, τ

c
−x)

∂e
−

∂W x
3 (e, τ

c
x, τ

c
x, τ

c
−x)

∂e

=
1

6
[τNx − τ cx] (10)

dΩ3(e, τ
N
x , τCx , τ

c
−x)

dτ cx
=

∂W x
3 (e, τ

N
x , τ cx, τ

c
−x)

∂τ c−x

− ∂W x
3 (e, τ

c
x, τ

c
x, τ

c
x)

∂τ cx

= −[
1

6
τNx − 7β

4
τ cx] (11)

Using the Envelope theorem, dΩ3(e,τNx ,τcx,τ
c
−x)

de
> 0 and dΩ3(e,τNx ,τcx,τ

c
−x)

dτcx
< 0

if and only if τCx < 2e
21β

= τNx . In other words, if the cooperative tariff is set

to the Nash tariff, there is no incentive to cheat. In general the static gain from

defection is given by :
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Ω3(τ
N
x , τ cx, τ

c
−x) =

7b

8
[(τ cx)

2 − (τNx )2] +
e

6
[τNx − τ cx] (12)

However, any temptation to cheat has the risk of future trade war due to grim-

trigger strategy employed by all countries. Thus, when countries attempt to devi-

ate from the cooperative tariff, they compare the static gain from defection with

the future discounted value of cooperation. Suppose all countries value the fu-

ture equally and let each country’s discount factor between periods be δ ∈ [0, 1)

and E be the expectations operator with expectations taken over the distribu-

tion of e. Then the present discounted value of the expected future gains from

multilateral cooperation today is given as:

δ

1− δ
[EW x(e, τCx , τ

C
−x)− EW x(e, τNx , τN−x)]

≡ ω3(τ
c
3(.)) (13)

Thus, from the equation (9) and (13), the countries no defect condition at the

phase–III is given by:

Ω3(e, τ
c
x(e), τ

c
x(e, τ

c
y(e), τ

c
z (e) ≤ ω3(e, τ

c
x(e), τ

c
x(e, τ

c
w(e), τ

c
z (e)),∀e (14)

But on equation (13) illustrates ω3 itself depends on the cooperative tariff func-

tion selected by countries. Therefore we need to make sure that equation (13)

and (14) are consistent. To do this our interest lies on finding the most coop-

erative tariff function chosen by the four countries. Hence, we the approach of

Tabakis (2015) and Bagwell and Staiger (1988), we initially fix ω3 at an arbitrary

non-negative value ,ω̄3, and solve the smallest possible non negative cooperative

tariff (τ c3 ) as well as the threshold volume of trade(ē3).

Thus, fixing ω̄3 > 0 and solving for ē3:
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ω ≡ WX(ē1, τ
N
X (ē), 0)−WX(ē, 0, 0) =

e2

126β

ē1 =
√

126βω (15)

The value on equation (15)is the threshold volume of trade where free trade

trade can maintained. Thus, the most cooperative tariff for country X can be

found by solving the following equation :

ω = WX
(
e, τNX , τ c−x

)
− WX

(
e, τ cx, τ

c
−x

)
(16)

Solving for τ cX ,

τ cx =
2
[
e−

√
126βω

]
21β

=
2 [e− ē]

21β
(17)

Putting all together, we can summarize our findings in Lemma 1 .

Lemma 1:

F (y) = 2y
3
2 − 6y + 6y

1
2 (18)

τ̂ cx(e) =

 0 if e ∈ [0, ē3];

2(e−ē)
21β

if e ∈ (ē3, 1].
(19)

Where: ē3 =
√
126βωIII

and with ωIII ∈ (0, 1
126β

) being the unique interior fixed point of:

ω̃III(ω̄3) =


δ

1−δ
F (126βω̄)
1323β

if ω̄3 ∈ [0, 1
126β

];

δ
1−δ

2
1323β

if ω̄3 >
1

126β
.

(20)

9



The implication of lemma 1 is that free trade can be sustained between coun-

tries if the inter-bloc trade volume is low. For low inter-bloc volume of trade,

the incentive to defect is small. But as along as the trade volume between blocs

increases and sufficiently greater than the threshold volume of trade, ē3 , there

will be greater incentive to deviate frommultilateral cooperation and hence, free

trade couldn’t be an option. As a result, countries may apply special protection

such as safeguards or countervailing duties so that the incentive to deviate from

the cooperative tariff would is kept check. Figure 1 depicts the most cooperative

tariff as a function of volume of trade, e.

Figure 1: Tariff function in Phase III

4 Phase II

Phase II is the transition period where there are two parallel trade talks between

the country pairs.

4.1 Phase–II static game

In phase II, we can characterize the Nash equilibrium by looking at country X ,

due to the fact that all countries face a symmetric situation. Hence, the market–
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clearing price for good X is detrmined where by having that world supply equals

world demand for good x.

P x
x =

α− 1

β
+

3τx

4
(21)

P−x
x =

α− 1

β
− τx

4
(22)

Country X’s imports from J, where J ∈ (Y,W,Z) are equal to country J’s

total export of good X. Thus, imports are given by:

Mx
j = (1 +

e

3
)− (α− βP j

x) =
e

3
− βτx

4
(23)

Now define the welfare of X as the sum of consumer surplus, Producer sur-

plus and tariff revenue.

WX
2 =

∫ α/β

PX
X

C (P ) dP +

∫ α/β

PX
Y

C (P ) dP +

∫ α/β

PX
W

C (P ) dP +

∫ α/β

PX
Z

C (P ) dP

+

∫ PX
X

0

(1− e) dP +

∫ PX
Y

0

(
1 +

e

3

)
dP +

∫ PX
W

0

(
1 +

e

3

)
dP +

∫ PX
Z

0

(
1 +

e

3

)
dP

τXMX
Y + τXMX

W + τXMX
Z . (24)

Using equation (24), we can derive the optimal tariff for country X:

∂WX
2

∂τX
=

e

4
− 15

16
βτX (25)

This implies that WX
2 is strictly concave in τX and the Nash tariff for X

equal:
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τNX =
4e

15β
(26)

Note that the Nash tariff in phase III is less than the phase–II Nash tariff

of 4e
15β

implying that once, FTAs are formed between countries, each country

reduces the external tariffs against non-members. This is of course inline with

past literature about the existence of tariff complementarity effect.

4.2 Phase–II dynamic game

Now we turn to characterize the phase II dynamic game: Doing so, we first look

at the most cooperative tariff function that can be supported during the time

where trade negotiation is underway which we call it the transition phase. The

most cooperative tariff that is self-enforcing is relative to the static gain from

defecting from cooperative tariff.

The static gain from defection is given by :

Ω2(τ
N
x , τCx , τ

C
−x) = W x

2 (τ
N
x , τC−x)−W x

2 (τ
C
x , τ

C
−x)

=
15β

32
[(τCx )

2 − (τNx )2] +
e

4
[τNx − τCx ] (27)

Thus;

dΩ2(e, τ
N
x , τCx , τ

c
−x)

de
=

∂W x
2 (e, τ

N
x , τCx , τ

c
−x)

∂e
−

∂W x
2 (e, τ

c
x, τ

C
x , τ

c
−x)

∂e
=

1

4
[τNx − τ cx]

(28)

dΩ2(e, τ
N
x , τ cx, τ

c
−x)

dτ cx
=

∂W x
2 (e, τ

N
x , τCx , τ

C
−x)

∂τ c−x

− ∂W x
2 (e, τ

c
x, τ

C
x , τ

C
x )

∂τCx
= −[

1

4
τNx − 7β

4
τ cx]

(29)
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Using the envelope theorem, dΩ(e,τNx ,τCx ,τC−x)

de
> 0 and dΩ(e,τNx ,τCx ,τC−x)

dτCx
< 0,

which is true if and only if τCx < 4e
15β

= τNx . In other words if the cooperative

tariff is set to the Nash tariff, there is no incentive to cheat.

The discounted expected future welfare loss for a country that violates mul-

tilateral cooperation today is given by:

ω2 =
(1− λ)δ

1− (1− λ)δ
[EW2(e, τ

c
x, τ

c
−x)− EW2(e, τ

N
x , τN−x)] +

λ

1− (1− λ)δ
ωIII

ω2 =
(1− λ)δ

1− (1− λ)δ

[
2

75β

(
var (e) + (E (e))2

)
− 3β

8

(
var (τ c) + (E (τ c))2

)]
+

λωIII

1− (1− λ)

(30)

We first fix ω2 at an arbitrary non-negative value and solve for the smallest

possible non negative cooperative tariff as well as the threshold volume of trade.

Thus, the most cooperative function is given by:

τ̂ cx(e) =

 0 if e ∈ [0, ē2];

4(e−ē2)
15β

if e ∈ (ē2, 1].
(31)

We have that:

ω̃II(ωII) =
(1− λ) δ

1− (1− λ) δ


[
2
(√

30β ω
)3 − 180βω + 6

√
30βω

]
225β

+
λ

1− (1− λ) δ
ωIII

(32)

Define a function :

F (y) = 2y
3
2 − 6y + 6y

1
2

ω̃II(ωII) = (1−λ)δ
1−(1−λ)δ

F(30βωII)
225β

+ λ
1−(1−λ)δ

ωIII

ω̃
′II(ωII) = (1−λ)δ

1−(1−λ)δ

30F(30βωII)
225β

> 0 iff 30βωII ̸= 1 =⇒ ωII ̸= 1
30
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ω̃
′II(0) = ∞

ω̃
′II( 1

30β
) = (1−λ)δ

1−(1−λ)δ
30F (1)
225β

= 0

ω̃
′′II(ω) = (1−λ)δ

1−(1−λ)δ

900F(30βωII)
225β

< 0 iff 30β < 1 =⇒ ωII < 1
30β

Therefore, the neccessary and sufficient condition for a unique fixed point

ωII ∈ (0, 1
30β

) is ω̃II( 1
30β

) < 1
30β

Lemma 2 The proofs are discussed above:

The most cooperative tariff in Phase II is

τ̂ c(e) =

 0 if e ∈ [0, ē2];

4(e−ē2)
15β

if e ∈ (ē2, 1].
(33)

Where ē2 =
√
30βωII

and

With ωII ∈ (0, 1
30β

) being the unique fixed point of:

ω̃II(ω̄) =


(1−λ)δ

1−(1−λ)δ
F (30βω̄)
225β

+ λ
1−(1−λ)δ

ωIII if ω̄II ∈ [0, 1
30β

];

(1−λ)δ
1−(1−λ)δ

2
225β

+ λ
1−(1−λ)δ

ωIII if ω̄II > 1
30β

.
(34)

Having all these most cooperative tariffs, we compare ωII and ωIII

Lemma 3: ωII < ωIII . The proof for this is in the appendix:

The implication of Lemma 3 has the following corollary:

Corollary 1: ēII < ēIII

Using equation (19) and (33), we have the following proposition
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Proposition 1: τ̂ c2(e) = τ̂ c3(e) = 0 for e ∈ [0, ē2]; and τ̂ c2(e) > τ̂ c3(e) for

e ∈ [ē2, 1].

An important observation of phase II is that, the threshold volume of inter-bloc

tradewhere free trade can bemaintained is lower in phase II than phase III imply-

ing that protection measures are more frequent and higher as compared to phase

III. Figure 2, shows the phase II and III most cooperative tariffs as a function of

trade volume.

Figure 2: Most cooperative tariff function in phase II and phase III
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5 Phase I

Phase I is a period where countries trade normally but expect that trade nego-

tiations will start soon between them. Here the phase I static game outcome is

similar with that of phase II. Where the static Nash- tariff is :τNj = 4e
15β

where

j=X,Y,W, and Z

5.1 Phase–I dynamic game

Now we turn to analyze the most cooperative tariff that can be supported during

the pre-negotiation period. We start by analyzing the static incentive to cheat

from the most cooperative tariff. Welfare gain from cheating from the most

cooperative tariff equal:

Ω(τNx , τCx , τ
C
−x) = W x(τNx , τC−x)−W x(τCx , τ

C
−x)

=
15β

32
[(τCx )

2 − (τNx )2] +
e

4
[τNx − τCx ] (35)

dΩ(e, τNx , τCx , τ
C
−x)

de
=

∂W x(e, τNx , τCx , τ
C
−x)

∂e
−

∂W x(e, τ cx, τ
C
x , τ

C
−x)

∂e

=
1

4
[τNx − τC−x] (36)

∂Ω(e, τNx , τCx , τ
C
−x)

∂τCx
=

∂W x(e, τNx , τCx , τ
C
−x)

∂τC−x

− ∂W x(e, τ cx, τ
C
x , τ

C
x )

∂τCx

= −[
1

4
τNx − 7β

4
τCx ] (37)

Using the envelope theorem, dΩ(e,τNx ,τCx ,τC−x)

de
> 0 and ∂Ω(e,τNx ,τCx ,τC−x)

∂τCx
< 0, which

is true if and only if τCx < 4e
15β

= τNx . In other words if the cooperative tariff is

set to the Nash tariff, there is no incentive to cheat.
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The discounted expected future welfare loss for a country that violates the

multilateral cooperation today is given by:

ω1 =
(1− ρ) δ

1− (1− ρ) δ

[
EW

(
e, τ cx, τ

c
−x

)
− EW

(
e, τNx , τN−x

)]
+

ρ

1− (1− ρ) δ

ωII − λω1
III

1− λ
(38)

Finally,

ω1 =
(1− λ)δ

1− (1− λ)δ

[
2

75β

(
var (e) + (E (e))2

)
− 3β

8

(
var (τ c) + (E (τ c))2

)]
+

ρ

1− (1− ρ) δ

ωII − λωIII

1− λ

=
(1− ρ) δ

1− (1− ρ) δ
E

[
−225β2 (τ cx)

2 + 16e2

600β

]
+

ρ

1− (1− ρ) δ

ωII − λωIII

1− λ
.

(39)

Lemma 4: The most Cooperative tariff function in Phase I equal:

τ̂ c(e) =

 0 if e ∈ [0, ē1];

4(e−ē)
15β

if e ∈ (ē, 1].
(40)

Where ē1 =
√
30βωI and

with ωI ∈ (0, 1
30β

) being the unique fixed point of:

ω̃I(ω̄) =


(1−ρ)δ

1−(1−ρ)δ

F(30βω̄I)
225β

+ ρ
1−(1−ρ)δ

ωII−δωIII

1−λ
if ω̄I ∈ [0, 1

30β
];

(1−ρ)δ
1−(1−ρ)δ

2
225β

+ ρ
1−(1−ρ)δ

ωII−δωIII

1−λ
if ω̄I > 1

30β
.

(41)

Now let’s compare ωI and ωII

Lemma 5: ωI < ωII . From Lemma 4 and Lemma 6 implies ωI < ωIII

Corollary 3: ēI < ēII < ēIII

17



Proposition 2: τ̂ c1(e) = τ̂ c2(e) = τ̂ c3(e) = 0 if e ∈ [0, ē1] and τ̂ c1(e) >

τ̂ c2(e) > τ̂ c3(e) if e ∈ (ē1, 1],

Implications:Comparing phase II and I, we find that even in the absence of

FTAs , the prospects of having FTAs between countries in the future matters as

soon as parallel trade talks are opened between them, the ability of countries to

multilaterally cooperate is enhanced and hence, any trade tension among them

starts to decline. Figure 3 summarizes the most cooperative tariff functions for

all phases.

Figure 3: The most cooperative tariff functions in phase I, phase II and Phase II

6 Conclusion

This paper investigates the impact of FTAs on the use of contingent protection

between competing exporters. We consider four-country, four-goods model and

develop a dynamic model similar to the competing-importers one of Tabakis

(2015), where multilateral trade cooperative must be self-enforcing and the eco-

nomic environment is characterized by trade-flow volatility. We model three

distinct but interrelated phases; phase I is the pre negotiations period, phase II

negotiation period and phase III is the period where the world has two symmetric

18



FTAs among the four countries. Our analysis demonstrates that the findings of

Tabakis (2015) extend to our competing-exporters case. In particular, the paral-

lel formation of different FTAs results in a gradual but permanent easing of mul-

tilateral trade tensions, especially as far as contingent protection is concerned.

Thus, our results supports the building-block effect of FTAs on multilateral trade

cooperation.

Though our model constitutes an extension of the previous literature, we believe

that our results provide further evidence that the formation of FTAs enhances

multilateral cooperation. In the future, we plan to consider the asymmetric for-

mation of FTAs in order to shed more lights on the question at hand.
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7 Appendix A

Proof of Lemma 1

Following Similar procedure as in Tabakis(2015), we have the following most

cooperative tariff function.

τ̂ cx(e) =

 0 if e ∈ [0, ē3];

2(e−ē)
21β

if e ∈ (ē3, 1].
ē3 =

√
126βω

ω = δ
1−δ

1
1323

[
2
(√

126βω
)3 − 6 (126βω) + 6

√
126βω

]

Define a function :

F (y) = 2y
3
2 − 6y + 6y

1
2

F ′ (y) = 3 (y)
1
2 − 6 + 3 (y)−

1
2 = 3

(
y

1
2 + y−

1
2 − 2

)
= 3

(√
y − 1

)2
√
y

> 0 iff y ̸= 1

F ′′ (y) = 3
1

2
(y)−

1
2 − 3

1

2
(y)−

3
2 =

3

2

(
y−

1
2 − y−

3
2

)
=

3

2

(
1
√
y
− 1

y
3
2

)
=

3 (x− 1)

2y
3
2

< 0 iff y < 1

ω̃ (ω) =
δ

1− δ

2
(√

126βω
)3 − 6(126)βω + 6

√
126βω

1323β
=

δ

1− δ

F (126βω)

1323β

ω̃ (0) = δ
1−δ

F (0)
1323β

= 0

ω̃′ (ω) = δ
1−δ

126
1323

F ′ (126βω) > 0 iff 126βω ̸= 1 ⇒ ω ̸= 1
126β

ω̃′ (0) = δ
1−δ

126
1323

F ′ (0) = δ
1−δ

126
1323

3 (0−1)2

0
= +∞

ω̃′
(

1
126β

)
= δ

1−δ
126
1323

F ′ (1) = δ
1−δ

126
1323

3 (1−1)2

1
= 0

ω̃′′
1 (ω1) =

δ
1−δ

15876β
1323

F ′′ (126βω) < 0 iff 126βω < 1 ⇒ ω1 <
1

126β

{0 < ωIII < 1
126β

}

Then ,
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=⇒ δ
1−δ

F (1)
1323β

< 1
126β

=⇒ δ < 1323
1575

= 0.84

Proof of Lemma 3

We define a continuous function ϕ(ω̄II) = ω̃II(ω̄II)− ω̄II

ϕ(0) = λ
1−(1−λ)δ

ωIII
i > 0 Thus if ϕ(ωIII) − ωIII < 0 then we must have

ϕ(ω̄II) = 0, in the interval (0, ωIII) =⇒ ωII < ωIII

Hence,the following should be satisfied

ω̃II(ωIII) < ωIII ⇐⇒ (1−λ)δ
1−(1−λ)δ

F(30βωIII)
225β

+ λ
1−(1−λ)δ

ωIII < ωIII

Rearranging :

⇐⇒ (1−λ)δ
1−(1−λ)δ

F(30βωIII
i )

225β
< (1−λ)(1−δ)

1−(1−λ)δ
ωIII
i

⇐⇒ δ
F(30βωIII

i )
225β

< (1− δ)ωIII
i

⇐⇒ F
(
30βωIII

)
< (1− δ)ωIII 225β

δ
=⇒ F

(
30βωIII

)
< 225βωIII

δ
1−δ

Re-

call from the proof of Lemma 1 F(y) is strictly increasing for all y except y ̸= 1:

Hence,

=⇒ F
(
30βωIII

)
< 225βωIII

δ
1−δ

Thus: Since ωIII < 1
126β

< 1
30β

, F is strictly increasing

=⇒ F
(
126βωIII

)
> F

(
30βωIII

)
< 225βωIII

δ
1−δ
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=⇒ F
(
126βωIII

)
> 225βωIII

δ
1−δ

From Lemma 1 we have F
(
126βωIII

)
= 1323βωIII

δ
1−δ

Therefore, 1323βωIII

δ
1−δ

> 225βωIII

δ
1−δ

Proof of Lemma 5:

Using the same techniques as in the proof of Lemma 4, we define a function

π
(
ω̄I

)
≡ ω̃I(ω̄I)− ω̄I and recalling ωI ∈ (0, 1

30β
) if we evaluate ϕ(0) = ω̃(0)−

0 =
ρ(ωII −ωIII)

[1−(1−ρ)δ][1−λ]
> 0

And ρ(ωII −ωIII)
[1−(1−ρ)δ][1−λ]

= ρ
[1−(1−ρ)δ][1−λ]

[
(1−λ)δ
1−(1−λ)

F(30βωII)
225β

+ λ(δ−λδ)
1−(1−λ)δ

ωIII

]

Therefore if π(ωII) < ω̃I(ωII) − ωII < 0 =⇒ π(ω̄I) = 0 at some point

(0, ωI)

Next we will check if π(ωII) < ω̃I(ωII)− ωII < 0

π(ωII) < ω̃I(ωII)− ωII < 0 =⇒ ω̃I(ωII) < ωII

=⇒ (1−ρ)δ
1−(1−ρ)δ

F(30βωII)
225β

+ ρ
1−(1−ρ)δ

ωII−λωIII

1−λ
< ωII

⇐⇒ ρ
[1−(1−ρ)δ][1−λ]

[
(1−λ)δ
1−(1−λ)

F(30βωII)
225β

+ λ(δ−λδ)
1−(1−λ)δ

ωIII

] [
(1−ρ )δ

1−(1−ρ )δ

F(30β ω II)
225β

]
+

(1−ρ)δ
1−(1−ρ)δ

F(30βωII)
225β

< (1−λ)δ
1−(1−λ)δ

F(30βωII)
225β

+ λ
1−(1−λ)δ

ωIII ⇐⇒
λδ

[1−(1−ρ)δ][1−(1−λ)δ]

[
F(30βωII)

225β
− F(126βωIII)

1323β

]
< 0

Note: The term in the bracket is negative because from Lemma 3, ωII <

ωIII =⇒ F (30βωII) < F (30βωIII) Since, λδ
[1−(1−ρ)δ][1−(1−λ)δ]

> 0 ; we need

to show
[
F(30βωII)

225β
− F(126βωIII)

1323β

]
is negative. Divide all terms by δ

1−δ

F(30βωII)
225β
δ

1−δ

− F(126β ω III)
1323β

δ
1−δ
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From Lemma 1 F
(
126β ω III

)
= 1323β

δ
1−δ

=⇒ F(126β ω III)
1323β

δ
1−δ

= 1

FromLemma 4: F
(
30β ω III

)
< 225β

δ
1−δ

andωII < ωIII =⇒ F
(
30βωII

)
<

F
(
30β ω III

)
< 225β

δ
1−δ

because F is increasing. This implies that F(30β ω III)
225β
δ

1−δ

< 1

and hence ,
[
F(30βωII)

225β
− F(126βωIII)

1323β

]
is negative.
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